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Abstract

In this paper we find out explicit solutions of the Betchov–Da Rios soliton equation in a principal
circle bundle π : P → M on a surface M . If P is endowed with a generalized Kaluza–Klein metric
ḡu, we show that the complete lift of any curve γ is a solution of the Betchov–Da Rios equation if
and only if the function u restricted to γ is just the curvature of γ . Some interesting applications
are given. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The first model to get the natural unification of gauge fields and gravitation goes back to
the classical model of Kaluza (1921) and Klein (1926). This is a five-dimensional model to
unificate gravity and electromagnetism. In this note the space time M is two-dimensional
with gravity determined by a pseudo-Riemannian metric g. Then, we consider aU(1) ≡ S1
principal fibre bundle P on M , endowed with a gauge potential (of electromagnetism) ω.
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The metrics that we consider on P are conformal to the so-called Kaluza–Klein metrics,
where the conformal factor is constant along the fibres. In some sense, these metrics are
locally warped products with warping function defined by the conformal factor. The aim
of this note is to obtain geometric solutions of the Betchov–Da Rios equation, also called
localized induction equation (LIE), in these models. Some applications and examples are
obtained. In particular, one of them relates the solution with the theory of elasticae. We
also obtain an irrational one-parameter family of gauge potentials (all of them with the
same holonomy) producing models which are foliated by solutions of LIE. The algorithms
exhibited here can be applied to construct solutions of LIE in other models.

2. Setup

Let π : P → M be a principal bundle with structure group S1 on a surface M and let ω
be the connection 1-form of a principal connection on P . For any metric g on M and any
positive smooth function u on M , we define

ḡu = π∗(g) + ε3(u ◦ π)2ω∗ dt2,

where ε3 = ±1 stands for the causal character of the fibres. Then π : (P, ḡu) → (M, g)

is a pseudo-Riemannian submersion and S1 acts by isometries of (P, ḡu). Let γ be a curve
in M and let γ̄ be any horizontal lift of γ . Then γ̄ is arclength parametrized just taking
γ arclength parametrized. The tube Tγ = π−1(γ ) is the complete lift of γ and can be
parametrized by

Ψ (s, t) = eit γ̄ (s).

In order to compute the ḡu-induced metric on Tγ we have

Ψs = eit γ̄ ′(s), Ψt = i eit γ̄ (s) ≡ V (s, t),

V being the tangent vector field to the fibres. Then the induced metric is given by(
〈Ψs, Ψs〉 〈Ψs, Ψt 〉
〈Ψt , Ψs〉 〈Ψt , Ψt 〉

)
=
(
ε1 0

0 ε3(u ◦ π)2
)
,

where we have used that V is the fundamental vector field 1∗, so that ω(V ) = 1. For the
sake of simplicity we will write u by ū.

The Betchov–Da Rios equation in three-dimensional hydrodynamics,

∂Ψ

∂s
∧ D̄∂/∂s

∂Ψ

∂s
= ∂Ψ

∂t
, (1)

is a soliton equation for space curves Ψ (s, t), D̄ being the Levi-Civita connection of the
space. This can be rewritten as Ψt = κB (the filament equation), where κ and B stand for
the curvature and the unit binormal of Ψ , respectively. The evolution of Ψ governed by this
equation of motion can be viewed as an idealization of the motion of a thin vortex cylinder
(see [4,5] for details).
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The first interesting result states as follows.

Lemma 1. Let γ be a curve in (M, g). Then π−1(γ ) = Ψ (s, t) is a solution of the
Betchov–Da Rios equation in (P, ḡu) if and only if u2(γ (s)) = κ2(s).

Proof. It is easy to see that

D̄ΨsΨs = ε2 eit κ̄(s)N̄(s),

ε2 standing for the causal character of the unit normal. Then we have

Ψs ∧ D̄ΨsΨs = ε2κ̄(s)e
it (γ̄ ′(s) ∧ N̄(s)) = ε2κ̄(s)e

it B̄(s),

which finishes the proof. �

3. Main results and applications

The first applications arise by choosing cylindrical coordinates in R3. We consider the
following subsets:

P = {(w, z) = (x, y, z) ∈ R3 : x2 + y2 �= 0} ≡ C∗ × R,

H = {(x, y, z) ∈ R3 : y = 0 and x > 0}.

Then P = H × S1. Let π : P → H be the canonical projection, which can be viewed as a
S1-bundle with the action

eit (w, z) = (eitw, z).

We have on this bundle an obvious connection associated to the horizontal distribution
defined by H .

3.1. The Euclidean case

Let g be the Euclidean metric onH and let u : H → R be the positive function defined by
u(x, 0, z) = x, x > 0, which measures the distance to the z-axis. Then ḡu is the Euclidean
metric on P provided ε3 = +1.

Our main theorem states as follows.

Theorem 2. Let γ be a curve in (H, g). The tube π−1(γ ) = Ψ (s, t) is a congruence
solution of the Betchov–Da Rios soliton equation in (P, ḡu) if and only if γ is an elastica
in (H, g).

Proof. Let γ (s) = (x(s), 0, z(s)), x(s) > 0, be an arclength parametrized curve in (H, g).
From Lemma 1 we see thatΨ (s, t) is a solution of the Betchov–Da Rios equation in (P, ḡu)
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if and only if u(γ (s)) = κ(s) = x(s), where κ stands for the curvature function of γ . On
the other hand, κ(s) = (−x′′z′ + x′z′′)(s), that jointly with x′2 + y′2 = 1 yield

x′′ = −xz′, (2)

z′′ = xx′. (3)

A first integral of (3) gives

z′ = a + 1
2x

2 (4)

for a certain constant a. We now combine Eqs. (2) and (4) to obtain

x′′ + 1
2x

3 + ax = 0. (5)

This equation shows that x(s) = κ(s) is a solution of the Euler–Lagrange equation of the
elastica in the Euclidean plane (see [6]) with Lagrange multiplier λ = −2a. That means
that γ is a critical point of the functional

∫
γ
(κ2 − 2a) ds acting on curves which satisfy

certain first-order boundary data in R2. The converse is a result due to Hasimoto [3] (see
also [4]). �

In Fig. 1 we sketch some examples of elasticae γ in R2 giving congruence solutions Tγ
of the Betchov–Da Rios equation in R3.

3.2. The Lorentzian case

Let g = dx2 − dz2 be a Lorentz metric on H and choose u ∈ C∞+ (H) as above. Then ḡu
gives a Lorentzian metric on P provided ε3 = +1. Given any curve γ in (H, g) we observe
that π−1(γ ) is just the surface of revolution obtained by rotating γ around the z-axis. As
ε3 = +1, for the sake of simplicity we will write ε = ε1 to denote the causal character of γ .
If Ψ (s, t) = (x(s) cos t, x(s) sin t, z(s)) is a solution of the Betchov–Da Rios equation, the
curvature function κ(s) = (x′′z′ − x′z′′)(s) of γ (s) must be equal to x(s). From here and
the unit speed condition (x′)2 − (z′)2 = ε on γ we get the following system of differential
equations:

x′′ = εxz′, (6)

z′′ = εxx′. (7)

In order to find spacelike solutions of the Betchov–Da Rios equation we must take ε = 1.
Then a first integral of (7) gives

z′ = a + 1
2x

2, (8)

a being a constant. By combining Eqs. (6) and (8) we have

x′′ − 1
2x

3 − ax = 0.
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This equation proves that γ is an elastica in L2 with Lagrange multiplier λ = 2a (see [2]).
Said otherwise, γ is a critical point of the functional

∫
γ
(κ2 +2a) ds acting on curves which

satisfy certain first-order boundary data in L2 (see [2] for details).
In Fig. 2 we exhibit some examples of spacelike elasticae γ in L2 which provide spacelike

congruence solutions Tγ of the Betchov–Da Rios equation in L3.
Furthermore, we can also find interesting examples of Lorentzian congruence solutions of

the Betchov–Da Rios equation in L3 shaped on timelike elasticae in L2. These are obtained
by solving the system

x′′ = 1
2x

2 − ax, z′ = − 1
2x

2 + a,

where a is again a constant related to the constrained length of curves on which the elastic
energy functional is defined. In Figs. 3 and 4 we sketch some of these curves and their
corresponding congruence solutions.

3.3. Non standard 3-spheres

Let π : S3 → S2 be the usual Hopf fibration. Let ḡ be the standard metric on S3 of
constant curvature 1 and let g be the standard one on S2 of constant curvature 4. Thus
π : (S3, ḡ) → (S2, g) becomes a totally geodesic pseudo-Riemannian submersion whose
fibres are isometric to S1. Given any smooth function u : S2 → R+, consider ḡu =
π∗(g) + ε(u ◦ π)2ω∗(dt2), where ω stands for the natural connection associated to the
horizontal (ḡu-orthogonal to the fibres) distribution. It is obvious that (S3, ḡu)has Lorentzian
causal character provided ε = −1. Then {π : (S3, ḡu) → (S2, g)} defines a class of
pseudo-Riemannian submersions with the same horizontal distribution. Furthermore, such
a submersion is totally geodesic if and only if u is a constant function. If this is the case,
(S3, ḡu) has constant scalar curvature.

Let γ be an immersed curve in (S2, g) and assume that γ has positive curvature function.
By Lemma 1 we take u ∈ C∞+ (S2) such that u(γ (s)) = κ(s). Then the tube Mγ = π−1(γ ),
naturally parametrized by fibres and horizontal lifts, provides a solution of the Betchov–Da
Rios soliton equation in (S3, ḡu).

To exhibit examples of this kind of solutions we propose the following algorithm.
First step (see [7]). Consider S3 as the set of unit quaternions {q ∈ H : q · q̄ = 1}

and S2 as the 2-sphere of radius 1
2 in the subspace span{1, i, j} ⊂ H. Let q → q̃ be the

skew-automorphism of H that fixes 1, j and k, but sends i to −i. Then π : S3 → S2 is
given by π(q) = 1

2 q̃ · q.
Second step. Given any point p = (A, 0, B, C) in S2, the fibre π−1(p) is given by

π−1(p)=
{(

D cosα,D sin α,
1

D
(B cosα − C sin α),

1

D
(B cosα + C sin α)

)

: α ∈ R

}
,

where D = √
(1 + 2A)/2.
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Fig. 4. Revolution timelike surface in L3 with a = −1.

Third step. Let γ (s) = (A(s), 0, B(s), C(s)) be an arclength parametrized curve in S2.
A straightforward but long computation shows that any horizontal lift γ̄ of γ to (S3, ḡu) is
given by

γ̄ (s) = (M(s) cosα,M(s) sin α,N(s) cosα − P(s) sin α, P (s) cosα + N(s) sin α),

whereM(s) = √
1 + 2A(s)/

√
2,N(s) = √

2B(s)/
√

1 + 2A(s),P(s) = √
2C(s)/

√
1 + 2A(s),

and

α(s) = 2
∫

C(s)B ′(s) − B(s)C′(s)
1 + 2A(s)

ds.

Fourth step. The natural parametrization of the Hopf tube Tγ = π−1(γ ) is just given by

Ψ (s, t) = eit γ̄ (s) = cos t γ̄ (s) + i sin t γ̄ (s),

where γ̄ (s) stands for a fixed horizontal lift of γ . Notice that in the last formula the quater-
nions are identified with C2 so as i = √−1.

An application of the algorithm can be seen in the following example.

Example. A rectangular torus as a Hopf surface.

A rectangular torus in (S3, ḡu) is associated with a small circleγ (s) = (a, 0, r cos(r/s), r sin(s/r))
of radius r in S2, a being a suitable constant. We now apply the first three steps to obtain
M(s) = √

2(1 + 2a)/2,N(s) = (
√

2r/
√

1 + 2a) cos(s/r),P(s) = (
√

2r/
√

1 + 2a) sin(s/r),
and α(s) = −(2r/1 + 2a)s.

The fourth step yields to the parametrization of the rectangular torus considered as a
Hopf tube given by
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Ψ (s, t)=
(√

1 + 2a

2
cos

(
t − 2r

1 + 2a
s

)
,

√
1 + 2a

2
sin

(
t − 2r

1 + 2a
s

)
,

×
√

2

1 + 2a
r cos

(
t + 1 + 2a

2r
s

)
,

√
2

1 + 2a
r sin

(
t + 1 + 2a

2r
s

))
.

As a consequence of our method the parametrization Ψ (s, t) gives a congruence solution
of the Betchov–Da Rios soliton equation in (S3, ḡu) for any positive smooth function u in
S2, which is the constant

√
1 − 4r2/r along γ . Notice that r < 1

2 because S2 is of radius 1
2 .

3.4. Metrics which admit a foliation with leaves being solutions of LIE

In this section we are going to show that any principal S1-bundle over a surface of
revolution (in R3 or L3) (Fig. 5) admits a pseudo-Riemannian metric which is foliated and
whose leaves are solutions of LIE. To do that it is enough to find vector fields, say V , in any
surface of revolution having neither zeroes nor inflexion points. We sketch the argument for
a surface of revolution S ⊂ R3 parametrized by X(s, u) = (f (s) cos u, f (s) sin u, g(s)) (a
similar argument holds in L3). The profile curve is assumed to be arclength parametrized,
so that f (s) > 0 anywhere and (f ′)2 + (g′)2 = 1. A trivial case occurs provided that the
parallels of S never are geodesics (for example a bugle surface), since in this case we choose
V generating the parallel flow. Otherwise, we locally deformate this flow around any critical
point of f . Therefore, writes V (s) = a(s)Xs + b(s)Xu, with a2 + f 2b2 = 1. Suppose
f ′(s0) = 0 is a local minimum for f (other possibilities admit similar computations), so
that there exists ε > 0 such that f (s) > f (s0) for |s − s0| < ε. We set a(s) = cosφ(s)
and f (s)b(s) = sin φ(s), then

DV V = 1

f
(f sin φ)′

(
− sin φXs + cosφ

f
Xu

)
,

where D denotes the Levi-Civita connection on the surface. Now we choose φ to be an
increasing differentiable function on (s0 − ε, s0 + ε) satisfying:

1. φ(s) = −π
2 if s ≤ s0 − ε,

2. φ(s0) = 0,
3. φ(s) = π

2 if s ≥ s0 + ε.

To illustrate this idea we exhibit another algorithm to get a Betchov–Da Rios foliation over
a principal S1-bundle endowed with a principal flat connection on a surface of revolution S
(see [1] for details). For the sake of simplicity we assume that the profile curve is not closed
(for example a catenary), in this case the fundamental group of S if free Abelian with one
generator.

First step. Let S̃ be the universal covering of S, so it is diffeomorphic to R2. The group
Z works as structure group of the principal fibre bundle π0 : S̃ → S and admits a trivial
flat connection, say ω0.

Second step. Let η be a real number such η/π /∈ Q (the set of rational numbers). The
map φη : Z → S1 given by φη(k) = eikη defines a monomorphism between (Z,+) and
S1 ⊂ C regarded as a multiplicative group.
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Fig. 5. Revolution surfaces in R3.

Third step. The transition functions of π0 : S̃ → S can be extended, via φη, to obtain
S1-functions which can be chosen as transition functions of a principal S1-bundle π : P →
S. Furthermore, φη can be extended to a monomorphism from S̃ to P which maps ω0 in a
flat connection, say ω, on P .

Forth step. We choose, as above, a vector field V on S having neither zeroes nor inflexion
points. Let {γs : s ∈ I } be the flow of V , I being the domain of the profile curve of S. We
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define a positive smooth function u on S by u(p) = κ(p), where κ is the curvature of the
V -integral curve through p. Then {π−1(γs) : s ∈ I } defines a Betchov–Da Rios foliation
on (P, ḡu), where g is the metric of S.
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